LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

B. Sc DEGREE EXAMINATION-Physics

First Semester-November 2014
MT 1100- Mathematics for Physics
Time: Forenoon/Afternoon
Max: 100 Marks
Date: / /2014

PART A

Answer ALL the questions
$(10 \times 2=20)$

1. If $y=\cos (a x+b)$, find y_{n}.
2. Find the polar subtangent and subnormal of the curve $r=e^{\theta \cot \alpha}$.
3. Prove that $\frac{e^{2}-1}{e^{2}+1}=\frac{\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \infty}{1+\frac{1}{2!}+\frac{1}{4!}+\ldots \infty}$.
4. Show that $\log \frac{a+x}{a-x}=\frac{2 a x}{a^{2}+x^{2}}+\frac{1}{3}\left(\frac{2 a x}{a^{2}+x^{2}}\right)^{3}+\frac{1}{5}\left(\frac{2 a x}{a^{2}+x^{2}}\right)^{5}+\cdots$.
5. Find the Laplace transform of $t^{3}+t+2$.
6. Find $L^{-1}\left(\frac{1}{(s-3)^{5}}\right)$.
7. Write the expansion of $\operatorname{tann} \theta$.
8. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
9. Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 8 .
10. What is the chance that a leap year selected at random will contain 53 Sundays?

PART B

Answer any FIVE questions
11. Find the $n^{\text {th }}$ derivative of (i) $\frac{7 x-1}{(3 x-1)(2 x-1)}$ and (ii) $\log \left(a^{2} x^{2}-b^{2}\right)$.
12. Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
13. Find the sum to infinity of the series $\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\cdots \infty$.
14. Verify Cayley- Hamilton theorem for the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right)$.
15. Find the transform of the rectangular wave given by the function
$f(t)=\left\{\begin{array}{c}1,0<t<b \\ -1, b<t<2 b\end{array}\right\}$ and $f(t+2 b)=f(t)$.
16. Write down the expansion of $\cos 6 \theta$ in terms of $\cos \theta$.
17. If $\sin (A+i B)=x+i y$, prove that $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$ and $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$.
18. A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) the proportion of days on which some demand is refused.

PART C

Answer any TWO questions

$$
(2 \times 20=40)
$$

19. (a) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, prove that $\left(1+x^{2}\right) y_{2}+x y_{1}=m^{2} y$ and $\left(1+x^{2}\right) y_{n+2}+$ $(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
(b) Find the maximum and minimum values of the function $f(x)=x^{3}-18 x^{2}+96 x+4$.
20. (a) Find the sum to infinity of the series $1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\cdots$.
(b) If a, b, c denote three consecutive integers, show that $\log _{e} b=\frac{1}{2} \log _{e} a+\frac{1}{2} \log _{e} c+$ $\frac{1}{2 a c+1}+\frac{1}{3}\left(\frac{1}{2 a c+1}\right)^{3}+\cdots$.
21. (a) Find the inverse Laplace transform of $\frac{5 s+3}{(s+1)\left(s^{2}+2 s+2\right)}$.
(b) If $\tan (x+i y)=u+i v$, prove that $\frac{u}{v}=\frac{\sin 2 x}{\sinh 2 y}$.
22. (a) Expand $\sin ^{3} \theta \cos ^{5} \theta$ in terms of sines of multiplies of θ.
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of Members	3	61	132	153	140	51	2

